DEPARTMENT OF GEOGRAPHY

Climate Change

GEOG0005

Seasons

Seasons

- Earth is tilted at an angle of 23.5° from its orbital plane
- Different parts of Earth receive the Sun's most direct rays
- When North Pole tilts toward the Sun, it is summer in the Northern Hemisphere.
- When South Pole tilts toward the Sun, it's winter in the Northern Hemisphere.

Seasonality of Surface Pressure and Winds

January

mean position of ITCZ < most frequent wind direction prevailing wind direction

Seasonality of Precipitation

January

July

DEPARTMENT OF GEOGRAPHY

Climate Change

GEOG0005

THEORY

- Radiative forcing
- Drivers of change
- Feedbacks

Energy Balance

- A system in equilibrium gains as much energy as it loses:
 - Energy in = Energy out
- Balance between incoming solar UV/visible (shortwave) radiation and outgoing infrared (longwave) radiation

Offsetting that Energy Balance

Earth's atmosphere is a grey body ($\epsilon \sim 0.77$) due to GHGs

Add more GHGs, increase ϵ (emissivity) or amount of radiation absorbed by atmosphere

Offsetting Energy Balance

• System out of balance due to increase in GHGs:

Energy in > Energy out

- Reduces outgoing energy
- Leads to energy/heat gain by the atmosphere
- Earth responds by reestablishing balance

Increases in Carbon Dioxide (CO₂)

- Anthropogenic CO₂ from combustion of fossil fuels
- Measured since late 1950s in Hawaii
- CO₂ is long-lived, so well mixed in the atmosphere
- Steady increase
- Seasonal cycle due to vegetation "breathing"

Increase in other Greenhouse Gases

Methane & Nitrous Oxide

Montreal Gases

Carbon dioxide most abundant, but not most potent (global warming potential)

Radiative Forcing

The difference between incoming and outgoing radiation in W/m²
 Incoming energy – Outgoing energy = Radiative forcing

Quantifies energy imbalance: 0=balanced; >0:warming; <0:cooling

• If Energy in > Energy out:

→ outgoing longwave radiation decreases → more heat trapped in atmosphere → positive radiative forcing → temperature of Earth's atmosphere increases (warming)

Radiative Forcing

Radiative forcing of individual greenhouse gases

Depends on abundance and wavelength region and intensity of absorption

Climate Feedbacks

- An initial response (warming or cooling) is amplified or reduced
- **Positive** if amplifies and **negative** if reduces initial response

Four Main Feedbacks

- 1. Water Vapour
- 2. Ice-Albedo
- 3. Clouds
- 4. Lapse Rate

Water vapour feedback

Positive

Ice-Albedo Feedback

Cloud Feedback

- Lapse rate: steepness of temperature gradient with altitude
- Gradient: Temperature difference between tropopause and surface
- Steeper gradient → greater greenhouse effect
- Steep gradient → outgoing radiation at colder temperature → greater greenhouse effect

- Radiative forcing ΔQ Uniform temperature changes over the vertical Temperature [K] \rightarrow
- Uniform change in temperature
- No change in gradient
- No lapse rate feedback

- Tropics experiences greatest warming at top of troposphere
- Gradient decreases (less steep)
- Greenhouse effect dampens
- Negative feedback

- Poles experience greatest warming at surface
- Gradient increases (more steep)
- Greenhouse effect increases
- Positive feedback

Four Main Feedbacks

- 1. <u>Water Vapour</u> Positive
- 2. <u>Ice-Albedo</u> Positive
- 3. <u>Clouds</u> Uncertain, but likely positive
- 4. Lapse Rate

Negative in the tropics; **positive** at the poles

INDICATORS OF CLIMATE CHANGE

- Global warming
- Sea level rise
- Extreme weather

The Intergovernmental Panel on Climate Change (IPCC)

- Creates regular comprehensive reviews of state-of-knowledge of climate change
- Also co-ordinates climate model projections
- Next report (AR6): 2021/2022
- Reports written by experts (volunteers)
- Split into thematic groups
- Signed off by governments

TSU: technical support unit

Global Warming (Time Perspective)

Change in global mean temperature

Spatial Variability Warming not uniform (Arctic vs Antarctic) Change in many locations already > 1.5°C

Extreme Weather

- Occurs naturally
- Climate change increases severity and frequency
- Interactive tool of global extreme weather events and links to climate change: <u>https://www.carbonbrief.org/mappe</u> <u>d-how-climate-change-affectsextreme-weather-around-the-world</u>

Global Heat Uptake

- Oceans absorb most additional heat energy
- Leads heat gain (in J or Joules)
- The amount of heat the planet can store (thermal inertia) controls the pace of change

Sea Level Rise

Sea level change from expansion and meltwater

Sea Level Rise

FUTURE PROJECTIONS

- Climate models
- Projections
- Responding to change

Climate Models

- Mathematical formulae and parameterizations for atmospheric processes
- Test scenarios (not always possible in real world)
- Computationally intensive

Climate Models

Tease out factors contributing to changes in climate variables like temperature

Climate Models

Predict likely future outcomes for potential future radiative forcings

Spatial Pattern of Warming

- Arctic and land warm fastest
- Minima in Southern Ocean
 and North Atlantic
- Nowhere is exempt from warming
- For climate scenarios, pattern is similar, magnitude varies

Change in average surface temperature (2081-2100 minus 1986-2005)

Rainfall / Precipitation

Change in average precipitation (2081-2100 minus 1986-2005)

Changes to other climate variables: <u>https://ar5-syr.ipcc.ch/topic_futurechanges.php</u>

Responding to climate change

Mitigate/Prevent

- Reduce radiative forcing
- Reduce GHG emissions
 - Clean technology
 - No deforestation
 - Increased energy efficiency
 - Reduced energy demand
- Geoengineering
 - Intentionally alter climate to mask the GHG forcing
 - Unintended consequences

- Understand/predict changes
 - Some are inevitable or already occurring (extreme weather, sea level rise)
- Build resilience
 - Infrastructure
 - Bureaucratic systems
 - Agricultural shifts
- Many countries not equipped to adapt

Who's to Blame?

Global cumulative CO_2 -equivalent (CO_2e) greenhouse gas emissions from 1965 to 2017 total 1,354,388 Mt CO_2e (Mt = mega or million tonnes).

Combined, what is the percent contribution of the 10 companies on the right to this total?

- A. 100%
- B. 2.6%
- C. 26%
- D. Negligible
- E. Not enough information given.

Top 10 greenhouse gas emitting companies (values are cumulative for 1965-2017)

Company	Country	All Emissions, MtCO,e
Saudi Aramco	🗖 Saudi Arabia	59,262
Chevron	≝ U.S.	43,345
Gazprom	💳 Russia	43,230
Exxon Mobil	■ U.S.	41,904
National Iranian Oil Co.	= Iran	35,658
BP	St UK	34,015
Royal Dutch Shell	Netherlands	31,948
Coal India	India	23,124
Pemex	Mexico	22,645
Petroleus de Venezuela	📫 Venezuela	15,745

[Adapted from

https://www.visualcapitalist.com/companies-carbon-emissions/

Summary

- Climate changes (warms) due to increases in greenhouse gases:
 - Alters energy budget of Earth (radiative forcing)
 - Energy gain leads to warming
 - Warming amplified by positive feedbacks
- Observe changes in climate:
 - Warming of surface temperatures
 - Sea level rise
 - Increase incidence and severity of extreme weather
- Changes will continue and magnify:
 - Strong warming
 - Disrupted hydrological cycle
 - Mitigate and/or adapt?

