Near-Automated Estimate of City Nitrogen Oxides Emissions Applied to South and Southeast Asia

Gongda Lu, E. A. Marais, K. Vohra, R. Horner, D. Zhang, R. V. Martin, S. Guttikunda

Target Cities in Understudied Regions with Large Hotspots

Annual (2019) mean TROPOMI NO₂ at ~5 km resolution

19 isolated hotspots selected (other hotspots: industries, power plants or not isolated)

Issue with Current Approach

Wind-rotated plume (speeds > 2 m/s)

Exponential Modified Gaussian (EMG) fit and best-fit parameters

Many criteria must be satisfied for successful EMG fit, so often fails

EMG fit fails for 40-60% of selected cities, depending on single sampling area chosen

Automate Selection of Multiple Sampling Areas

Wind-rotated plume

Upwind 54 sampling areas largest -100 smallest Distance from city centre [km] -50 -0-50 -100 -52 areas in between 150 -200 -**Downwind** 0.0 2.5 5.0 7.5 10.0 [10¹⁵ molecules cm⁻²]

EMG fit to 54 sampling area line densities

Mean of successful fits is the top-down emissions and standard deviation is the EMG fit error

Fit Success Enhanced with Many (54) Sampling Areas

Number of successful EMG fits

- Poor fit $(R^2 \le 0.8)$
- Emission width >
 NO₂ decay length
- NO_2 in plume < 0
- NO₂ decay length outside sampling area

[Criteria adopted from Laughner & Cohen, 2019]

Improve from 5 to 11 city emissions reported for these regions in past studies to 19 in this work

Derive City-Specific NO_x Emissions and Fit Uncertainties

NO_x emissions from mean of individual successful fits. Standard deviation provides fit error.

Assessment Against Past Top-down Studies

Goldberg et al:

OMI 3-year mean (2018-2020) of all months for all except Delhi and Karachi (May-Sept)

Lange et al:

TROPOMI until 03/2020 using earlier retrieval version

Our values ~25% more than others. Lange version differences. Goldberg causes not obvious.

Assessment Against Bottom-Up Estimates

Comparison for top-down < 35 mol/s

Comparison for top-down > 35 mol/s

Discrepancies greatest for Yangon (4 times), Dhaka (7 times), and Kabul (11 times).

Pattern emerges: Top-down > bottom-up to north and vice versa to south, as no accounting for latitudinal variability in photochemical lifetime of NO_x (NO_x loss dominated by advection)

Concluding Remarks

- Automate and eliminate need for subjective sampling area selection
- Success of deriving emissions improves from ~50% of cities to all (100%) cities
- Enables city-specific quantification of uncertainties in best-fit parameters
- Pattern emerges (latitude dependent discrepancies with bottom-up emissions) to identify opportunities to further improve the top-down method
- Enhanced success enables application to regions like Sub-Saharan Africa where hotspots are not so "hot"
- Questions or to use our code: e.marais@ucl.ac.uk
- Find out about other work in our group: https://maraisresearchgroup.co.uk/