Sources and Challenges in Regulating Fine Particles (PM_{2.5}) in UK Cities

Eloise A Marais Jamie M Kelly

Roland Leigh Jordan White

Ella Adoo-Kissi-Debrah

Source – Ella Roberts Foundation (<u>http://ellaroberta.org/about-ella/</u>)

Air pollution has negative impacts on nearly all major organs and systems of the body

Source – European Environment Agency (https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution)

Air pollution is major public health burden in the UK

Percentage of deaths attributable to air pollution

Source – BBC and UK HSA (https://www.bbc.co.uk/news/health-35629034)

Highest mortality rates in polluted and populated regions (e.g. London)

Annual mortality rates...

- UK = 30,000-40,000
- Europe = ~400,000
- Globally = 2-8 million

Most important pollutant are Fine Particles (PM_{2.5})

Fine Particles

Source – US Environmental Protection Agency (EPA)

Particles are a mix of components that persist for days

PM_{2.5} includes local and distant sources (long atmospheric lifetime)

Regulatory Framework for Air Pollution in the UK

Operating 24/7

ULEZ central London from 8 April 2019

in the same area as the Congestion Charge

ULEZ extension to inner London from 25 Oct 2021

up to North and South Circular roads, including existing central London zone

(all vehicles)

LEZ London-wide from 26 Oct 2020 (lorries and other vehicles over 3.5T)

Greater London Authority Boundary

For a full list of affected vehicles see tfl.gov.uk/ulez

Vieno et al. (2014); Vieno et al. (2016); Harrison et al. (2021), Fuller et al. (2014); Graham et al. (2020); Jiang et al. (2020); Wang et al. (2020).

Research Questions and Methodology Overview

RQ) What regions and sectors are the biggest contributors to PM_{2.5}?

Method #1 – Atmospheric modelling (UK-wide)

Eloise A Marais Jamie M Kelly

Department for Environment Food & Rural Affairs

Method #2 – Low cost sensors (Leicester)

Roland Leigh Jordan White EARTHSENSE

Simulate PM_{2.5} with the 3D Model GEOS-Chem

3D Atmospheric Chemistry Transport Model

Comprehensive emissions

Chemistry, transport, and loss processes

GEOS-Chem manual: http://acmg.seas.harvard.edu/geos/

Assess Validity of Model using Reference Monitors

Use total PM_{2.5} observations from the Automatic Urban and Rural Network (AURN) to assess model

Comparison of annual mean surface concentrations of PM_{2.5} for 2019

Consistent spatial pattern (**R** = 0.66) and variance (**slope** = 1.0). Model 16% less than observations

observed $PM_{2.5}$ (µg m⁻³)

 $y = (1.0 \pm 0.1)x - (1.2 \pm 0.8)$

Rural Background

Urban Background

Suburban Background

15

Urban Industrial

Urban Traffic

10

74% of UK exceeds updated WHO guideline

Simulate PM_{2.5} with the 3D Model GEOS-Chem

3D Atmospheric Chemistry Transport Model

GEOS-Chem manual: <u>http://acmg.seas.harvard.edu/geos/</u>

Simulate PM_{2.5} with the 3D Model GEOS-Chem

3D Atmospheric Chemistry Transport Model

GEOS-Chem manual: <u>http://acmg.seas.harvard.edu/geos/</u>

Contribution of Sources to UK PM_{2.5}

Research Questions and Methodology Overview

Q1) What sectors are the biggest contributors to $PM_{2.5}$?

Q2) To what extent is PM_{2.5} controlled by local emissions, versus transboundary emissions?

Leicester

London

Method #1 – Atmospheric modelling (UK-wide)

Eloise A Marais Jamie M Kelly

Department for Environment Food & Rural Affairs

Method #2 – Low cost sensors (Leicester)

Roland Leigh Jordan White EARTHSENSE

Corroborating Evidence from Low-Cost Sensors

Low-cost network of Zephyr sensors distributed throughout Leicester since November 2020

Corroborating Evidence from Low-Cost Sensors

BEAUMONT

LEYS

🐴 National Space Centre 🚇

Frog slar

9.2 ± 1.4 µg m⁻³

9

Leice

King Power Stadium

 \mathbf{O}

8

Cropston

Anstey

ate Park

nfield

orpe Astley

5

6

Braunstone

Town

3

4

January 2021

Wanlip

Thurmaston

TeamSport Go

HUMBERSTONE

ROWL

EVII

Oadt

11

12

13

14

0

10

Karting Cicester

SDINNEY HILLS

of Leicester

Birstall

February 2021

According to low-cost sensors, local sources contribute **5-11%**. Similar to the model (**3-5%**)

Results for Large Cities like London and Birmingham

Regulatory Framework for Air Pollution in the UK

Conclusions and Acknowledgements

• Unregulated agriculture dominates PM_{2.5} year-round

Thanks for listening!

- Mainland Europe makes large seasonal contribution to PM_{2.5} in November to April.
- · Policies targeting local sources only effective for cities as large as London
- Results reinforce the need for continued and strengthened international agreements and measures to control ammonia emissions from agriculture
- Anthropogenic dust is a large source of uncertainty due to challenges representing emissions and evaluating the model

Support provided by Leicester City Council from a Defra-funded Air Quality Grant

