Air quality and health from the city to the global scale
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Satellites help monitor air pollutants
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Space-based instruments provide extensive data coverage

We develop our approach focusing on 4 dynamic cities
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How do satellites make measurements of atmospheric composition?

OMI overpass time : 13h30 local time
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We conduct careful assessment with surface monitors

Satellite versus surface NO, in London Satellite versus surface NH5 in Harwell
London (2005-2018) Harwell (2011-2015)
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Satellite observations of AOD reproduce long-term trends in PM, -

Satellite AOD versus surface PM, 5 Birmingham (2009-2017)
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OMI NO, (10" molecules cm)

We apply trend analysis to long-term record of satellite observations
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Long-term air pollutant trends for cities in the UK and India

(Arrow colour and size indicate trend direction and magnitude respectively)

Air pollutant London Birmingham Delhi ~ Kanpur 4 increase

NOZ ‘ ‘ f 2 < Decrease

(2005-2018)

NH '
(2008-2018) ‘ * 2 {F 4
NMVOCs ¢ $

(2005-2018)

PM, ; ‘

(2005-2018)

Significant
f ' trends are
outlined

[Vohra et al., 2021]




Conclusion

Satellite observations can be used to determine recent long-term trends in NO,, NHj,

HCHQO as a marker for reactive non-methane volatile organic compounds (NMVOCs)
and AOD for PM, 5

Trends in all pollutants (except NH5 in Kanpur) are positive in the Indian cities
suggesting no improvements in air quality despite recent pollution control measures.

Trends in all pollutants (with the exception of reactive NMVOCs in London) declined in
cities in the UK likely due to successful control on vehicular emissions. Reactive
NMVOCs increased by more than 65 % in London during 2012-2018 possibly due to

increases in oxygenated VOCs from household products, the food and beverage
industry and residential combustion.
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Severe health burden from fossil-fuel related PM, -

Dominant anthropogenic source;
Can be easily controlled

Fossil-fuels
Particulate bust x

e 4 matter (PM s) Wildfire smoke x
4.2 million deaths attributed Others x

to ambient PM,, s in 2015
[Cohen et al., 2017]

In this study, we use a chemical transport model GEOS-Chem to
estimate PM, s contribution from fossil-fuel combustion



Model results of global and regional PM, - for 2012

Population density (background) and model regions simulated (boxes)
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Model estimate of fossil fuel PM, ¢

Difference between model simulations with and without fossil fuel PM, 5
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Standard and widely used risk assessment models

Integrated Exposure-Response (IER) Global Exposure Mortality Model (GEMM)
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Data includes active and passive smoking 41 cohort studies and model

to address outdoor PM, = > 40 ug m-3 constrained using 4 parameters



Updated risk assessment model used in our study
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concentration-response
function
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Methodology for health impact calculation
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We use the derived fossil-fuel PM, s with baseline
mortality in the meta-analysis concentration-response
function to estimate global premature mortality




Estimated global premature mortality from fossil fuel combustion

Excess deaths, per grid cell
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10.2 million premature deaths attributed to fossil-fuel PM, s in 2012

[-47 million, 17 million] [Vohra et al., 2021]



Regional premature mortality from fossil fuel combustion

India
2,500,000

Premature deaths per grid box

(50 km latitude x 67 km longitude) [VOh ra et al 2021 ]



Regional premature mortality from fossil fuel combustion
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Policies can help mitigate these premature deaths

China
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Dramatic reduction in PM, s in China from 2012 to 2018 decreases
premature deaths by 1.5 million 'Vohra et al., 2021]



Children are also affected by air pollution from fossil fuels
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More than 2000 premature deaths from lower respiratory infection alone for
children < 5 years old

[Vohra et al., 2021]



Implications of and response to our findings

We calculate global premature mortality that is much greater than previous estimates
(updated risk assessment model, higher spatial resolution PM, ;)
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https://www.theguardian.com/environment/2021/feb/09/fossil-fuels-pollution-deaths-research

Conclusion

Fossil-fuel related PM, 5 pollution was responsible for 10.2 million adult premature
deaths in 2012 with more than 60 % of these deaths in China and India.

Substantial reduction in fossil fuel use in China from 2012 to 2018 led to a 38 % decline
in premature deaths from 3.9 million in 2012 to 2.4 million in 2018.

Our premature mortality estimates are higher than previous studies (Cohen et al., 2017;
Burnett et al., 2018) because we use an updated health risk assessment model and a
finer spatial resolution chemical transport model.

More than 2000 children in North America, South America and Europe were affected by
lower respiratory infections as a result of exposure to PM, s from combustion of fossil
fuels.
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Tropical cities are experiencing unprecedented growth

46 cities in tropical Asia and Africa will be megacities by 2100 [Hoornweg & Pope, 2017]
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Trends in NO, in tropical future megacities in 2005-2018

NO, increases in 41 cities by 0.1-14.1 % a; leading to a gradual transition in ozone
production regime from NO,-sensitive to NO,-saturated
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Trends in NH; in tropical future megacities in 2008-2018

NH,; increases in cities in all regions except the Indian subcontinent
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Trends in PM, ; in tropical future megacities in 2005-2018

Large and significant increases of 3-8 % a-'in PM, ; over Indian subcontinent
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Dominant sources are many: secondary sources from NOx, NH3, NMVOCs, primary
sources of windblown dust, crop and trash burning, residential and open fires
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Severe health burden in tropical future megacities
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Conclusion

Most pollutants in almost all tropical cities increase at rates 2-3 times faster than or

opposite in direction to reported national and regional trends

We estimate an increase in premature mortality by 180,000 linked to the rapid rise in

anthropogenic air pollution in these fastest-growing tropical cities
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