Tropical cities are experiencing unprecedented growth 46 cities in tropical Asia, Africa and the Middle East will be megacities by 2100 Forecast annual growth rates for 2020-2100: 3-31% in Africa, 0.8-3% in South Asia and 0.5-7% in Southeast Asia [Hoornweg & Pope, 2017] #### Tropical cities are the next frontier in air pollution Currently, limited surface monitoring of air pollutants across the tropics < 1 monitor per million people [Martin et al., 2019] Long and consistent record of atmospheric composition from space-based instruments OMI for NO₂ and HCHO (proxy for NMVOCs) IASI for NH₃ **MODIS** for **AOD** (proxy for $PM_{2.5}$) # Assessing the skill of satellite observations at reproducing variability in surface air quality Satellite versus surface NO₂ in **Delhi**, India (2011-2018) Satellite versus surface NH₃ at the background site **Harwell**, UK (2011-2015) Temporal consistency between satellite and surface measurements of NO₂ and NH₃ [Vohra et al., ACP, 2021] ### Satellite observations of AOD reproduce long-term trends in PM_{2.5} ## Satellite AOD versus surface PM_{2.5} in **Birmingham**, UK (2009-2017) Complicated by meteorological conditions, aerosol composition & vertical distribution [Vohra et al., ACP, 2021] #### Trends in NO₂ in tropical future megacities in 2005-2018 NO₂ increases in 41 cities by 0.1-14.1 % a⁻¹ Steep increases in NO₂ with implications for ozone formation and aerosol nitrate #### Trends in ozone production regimes in 2005-2018 Satellite observations of HCHO/NO₂ are used as proxy for ozone production regimes All cities except Jakarta and Sana'a are in NO_x -sensitive regime; Gradual transition to NO_x -saturated regime may occur as early as 2025 [Vohra et al., in review] #### Trends in NH₃ in tropical future megacities in 2008-2018 NH₃ increases in cities in all regions except the Indian subcontinent Steep increasing trends in cities in Africa and Southeast Asia may reflect increasing urban sources of NH₃ [Vohra et al., in review] #### Trends in PM_{2.5} in tropical future megacities in 2005-2018 Large and significant increases of 3-8 % a⁻¹ in PM_{2.5} over Indian subcontinent The large increase in South Asian cities is driven by an increase in PM_{2.5} precursor emissions and not desert dust #### Determine premature mortality from exposure to PM_{2.5} More cohorts, wider age and PM_{2.5} range and more health endpoints than GBD function [Vodonos et al., 2018] Higher premature mortality estimates than previous studies Premature deaths linked to PM_{2.5} from fossil fuel combustion in 2012 [Vohra et al., *ER*, 2021] #### Severe health burden in tropical future megacities Premature mortality from long-term PM_{2.5} exposure **290,000** in 2005 **62%** **470,000** in 2018 Largest increases in premature mortality in cities in Asia Effects of PM_{2.5} on health in African cities countered by decline in baseline mortality [Vohra et al., in review] #### Conclusion - Most pollutants in almost all tropical cities increase at rates 2-3 times faster than or opposite in direction to reported national and regional trends - Only Jakarta shows evidence of air quality improvements due to policy measures, and those improvements have had a limited effect, leading to decline in NO₂ but not in NH₃ or PM_{2.5} - Ozone formation is on track to transition from strongly NO_x-sensitive to the more challenging to regulate VOC-sensitive regime - We estimate an increase in premature mortality of 180,000 linked to the rapid rise in anthropogenic air pollution in these fastest-growing tropical cities #### Reference K. Vohra, E. A. Marais, W. J. Bloss, J. Schwartz, L. J. Mickley, M. Van Damme, L. Clarisse, P.-F. Coheur, Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018, in review, *Science Advances*. #### Any Questions? Email k.vohra@ucl.ac.uk