The impact of rockets on climate and stratospheric ozone and Upper tropospheric NO_x

an update from London

Rob Ryan, visiting University of Melbourne April 2022

The modern space launch industry

 Are launch rates about to accelerate, and what will the environmental consequences be?

Compiling a rocket launch dataset

Fuel type	Emissions
Kerosene	NO _x , H ₂ O, soot
Hypergolic fuel	NO_x , H_2O , soot
Liquid hydrogen	NO _x , water
Solid fuel	NO _x , H ₂ O, Alumina, Chlorine
Re-entering components	NO _x

* Ozone depletion

* Atmospheric warming

Simulating ozone and radiative forcing changes

Stratospheric ozone depletion

7 satellite merged dataset, Ozone trend 2000-2016

The spring recovery trend in the Arctic upper stratosphere is 81 ppb dec-1

- We find springtime Arctic O₃ loss at 5 hPa is 9 ppb dec⁻¹
- This increases this to 16 ppb dec-1 with space tourism.

Potential to undermine 20 % of the post-Montreal Protocol gains

Global warming caused by soot emissions

Net radiative forcing (Space tourism)

 Rocket soot makes up ~0.0002 % of global soot emissions but produces 6 % of the total soot warming

Are there any 'clean' rocket fuels?

Solid fuels:

Rocket chlorine emissions (Cl + HCl) cause the most ozone depletion

Hypergolic and kerosene-based fuels:

Hydrocarbon based fuel emissions are the cause of positive radiative forcing

Black carbon mean forcing: 8.0 mW m⁻²

Liquid hydrogen fuel

No BC or chlorine, but ubiquitous NO_x (including re-entry NO_x), which plays an important O_3 depletion role

Summary

We added an emissions inventory of pollutants from rocket launches to GEOS-Chem

- Contemporary emissions and emissions growth scenario
- Speculative space tourism emissions

Chlorine and nitrogen oxides are responsible for ozone depletion

- Small global average impact
- Strongest O₃ depletion in the upper stratosphere
- Potential to undermine ~20 % of gains made post-Montreal Protocol, in this part of the atmosphere

Black carbon (soot) is responsible for enhanced radiative forcing

• Due to the altitude of emission, rocket soot is extremely efficient (500 times other sources!) at warming the atmosphere.

Project 2: Understanding upper tropospheric NO_x using GEOS-Chem and TROPOMI

Cloud slicing for retrieving upper tropospheric mixing ratios

APPROACH

NO₂ Cloud Atmosphere

Use cloud height variability to derive partial columns

[adapted from Choi et al., 2014]

NO₂ volume mixing ratio (VMR) between clouds at p1 and p2

$$NO_2 VMR = \frac{\Delta VCD}{\Delta p} \times \frac{k_B g}{R_{air}}$$

Cloud-sliced observations vs GEOS-Chem

- GEOS-Chem underestimates TROPOMI U.T. NO₂ by about half on average
- Greatest agreement over tropical and sub-tropical land
- Greatest agreement in areas of very high lightning flash rate
- Large discrepancy over remote ocean, especially tropics, and areas of moderate-low lightning flash rate

Reaction rate tests in GEOS-Chem

- GEOS-Chem U.T. NO₂ increased by updating reaction rates for NO-NO₂ cycling
- We also found that U.T. peroxypropionyl nitrate (PPN) is over-represented in GEOS-Chem by about 60 % because photolysis and OH-reaction sinks were missing.

Reaction rate tests in GEOS-Chem

Original simulation

200 1:1 line Fit, $y=(0.6\pm0.0x + -15.6\pm0.2)$ 150 R = 0.57GEOS-Chem 100 50 50 150 100 200 rocinn-cal

All reaction rate tests combined

- Comining all reaction rate tests improves the comparison by about 10 %.
- Next steps: address uncertainties in the way NO_x from lightning is parameterised in GEOS-Chem