Improved representation of lightning NO_x in GEOS-Chem informed by vertical profiles of NO_2 from cloud-slicing TROPOMI

Bex Horner¹ (rebekah.horner.20@ucl.ac.uk) & Eloise A. Marais¹

¹Department of Geography, University College London, London, UK

We use lightning flash energy data to develop time- and space-resolved lightning NOx production rates

1 Lightning parameterisation in GEOS-Chem

Lightning NO_x production rate in GEOS-Chem is currently set to 500 moles per flash north of 35°N and 280 moles per flash everywhere else.

 Flash radiances (flash energy) vary spatially and diurnally.

 Radiances are greatest over oceans and peak in the morning over land → lightning NO_x should vary spatially and diurnally in the GEOS-Chem model.

Lightning data from the Lightning Imaging Sensor (LIS) satellite instrument show that the energy per flash varies spatially and diurnally.

2 Cloud-slicing TROPOMI partial columns

- Nitrogen oxides (NO_x) are key contributors to tropospheric ozone (O₃).
- Observations of the vertical profiles of tropospheric NO_x are severely limited.
- Cloud-slicing (right) addresses this by taking advantage of satellite partial columns separated by optically thick clouds¹¹.
- We apply cloud-slicing to TROPOMI NO₂ and column densities.

Cloud-slicing yields global vertical profiles of seasonal mean NO₂ volumetric mixing ratios (VMRs) in 5 tropospheric layers.

3 Using cloud-slicing to evaluate GEOS-Chem

We use GEOS-Chem v13.3.4 as state-ofknowledge of tropospheric NO_x and O₃ and compare it to our cloud-sliced NO₂ data product on the model grid (2° x 2.5°)^[2].

model grid (2" x 2.5")^[2]. Model updated to include liberation of NO_x via peroxypropionyl nitrate (PPN) photolysis and particulate nitrate photolysis^[3].

GEOS-Chem overestimates NO₂ in the upper troposphere over northern mid-latitudes, especially in the summer months where the production of lightning NO₂ dominates.

4 Lightning NO_x production rates from LIS radiances

The parameterisation by Wu et al. $^{[a]}$ is applied to LIS flash radiances to calculate the gridded lightning NO $_x$ production rates.

y = thermochemical NO $_x$ yield (9.0 x 10 16 molec/J) N_A = Avogadro's constant E = LIS flash radiances N_{fl} = LIS flash counts

P = Mean global LNO, production rate (265 mol/fl)

Far more variable NO_{x} per flash than fixed values currently used.

5 Implications for lightning NO emissions simulated by HEMCO

Large spatial changes, but similar hourly variability, as latter governed by variability in flashes.

6 Changes to concentrations in the mid-troposphere

Simulations over the TROPOMI satellite overpass time (12:00-15:00 Local Solar Time)

New > Old

New < Old

Difference in concentrations from using LIS production rates. 600-320 hpa (4-10 km). JJA 2019

 Large increases over Central America and modest increases over remote oceans where LNO_x production rates increase (see Box 5).

Decreases over Eurasia where production rates were set to 500 mol/fl.

Difference in concentrations from using LIS production rates, 609-320 lbPa (4-10 km), JIA 201

Changes in oxidants and atmospheric composition leads to implications for model estimates of climate change attributable to tropospheric O_3 and the persistence of VOCs and O_3 precursors.

7 Ongoing work

- Assess the impact of a more mechanistic lightning NO_x parameterisation in other seasons and years.
- Use cloud-sliced vertical profiles to assess our new lightning NO_x parameterisation in GEOS-Chem.

Acknowledgements Research funded by the ERC. We

are grateful to NASA for LIS data. Thanks to Robert G. Ryan for PPN photolysis in GEOS-Chem and Viral Shah for nitrate photolysis in GEOS-Chem.

References

[1] Ziemke J.R. et al. (2001) JGR 106(D9) [2] Horner R.P et al. (2024) ACP in review [3] Shah V. et al. (2023) ACP 23(2) [4] Wu Y. et al. (2023) JGR 128(4)