

# Application and Evaluation of a Widely Used Top-down NO<sub>x</sub> Emissions **Method to Hotspots in Sub-Saharan Africa**



Nana Wei (nana.wei.21@ucl.ac.uk), Eloise A. Marais, G. Lu, S. Beirle

Major outputs: We updated anthropogenic NO<sub>x</sub> emission inventory in GEOS-Chem and improved NO<sub>2</sub> column simulations.

Top-down NO<sub>x</sub> Emissions method: Derive NO<sub>x</sub> emissions of isolated hotspots viewed by UV-visible space-based sensors

**1. Wind rotated TROPOMI NO<sub>2</sub> over hotspot** 

3. Hotspot NO<sub>x</sub> emissions and lifetimes



2. Model fit to line densities to yield best fit parameters





## **1. Motivation**

# 3. Derived NO<sub>x</sub> emissions and lifetimes for 18 of 28 target hotspots

#### **Target hotspots in understudied Sub-Saharan Africa**

- $\succ$  Surface concentrations of NO<sub>x</sub> are increasing at rates of up 10% per year in cities in Africa.
- Rapid population growth and urbanization in the absence of air quality policies
- > Models needed to inform air quality policies use out-of-date inventories for cities in Africa.
- Most top-down emissions derivation methods require computationally costly models.

# 2. Research Methodology

Apply a recently improved method of deriving hotspot NO<sub>x</sub> emissions from satellite (TROPOMI) observations of NO<sub>2</sub>

- Rotation of hotspot NO<sub>2</sub> plume along a consistent wind direction.
- 2. Selecting multiple sampling areas (54) around emissions hotspots to fit a modified Gaussian to line densities to calculate emissions.



- Emissions range from 2 to 130 mol/s and lifetimes from 2 to 10 h.
- $\geq$  8 fail, as background and plume are not distinct enough.
- > South Africa hotspot emissions are far greater (28-130 mol/s) than rest of Sub-Saharan Africa (<28 mol/s)
- $\succ$  Our top-down NO<sub>x</sub> emissions are on average ~28% less than Lange et al. and ~14% less than Goldberg et al.



**Update GEOS-Chem high resolution Global emission inventory CEDSv2** for anthropogenic NO<sub>x</sub>

## 4. NO<sub>x</sub> emissions-informed GEOS-Chem improved NO<sub>2</sub> simulations



- Update CEDSv2 with our top-down  $NO_x$  emissions.
- 2. Compare NO<sub>2</sub> columns from the original GEOS-Chem, GEOS-Chem informed by updated CEDSv2, and TROPOMI.

5. Concluding Remarks: NO<sub>x</sub> emissions are derived successfully for 18 of 28 targeted hotspots in Sub-Saharan Africa. We improved NO<sub>2</sub> tropospheric column simulations in GEOS-Chem via updating anthropogenic NO<sub>x</sub> emission inventory (CEDSv2) with our top-down NO<sub>x</sub> emissions.

**Acknowledgements:** This work is funded by the European Commission.

Contact: Nana Wei, Department of Geography, UCL. Email: nana.wei.21@ucl.ac.uk