Use of Satellites for Health and Environmental Justice # Use of Satellites for Health and Environmental Justice ... and Vertical Profiles and a UK Validation Site #### Satellite Instrument Validation Point in Central London Only UK UV/visible validation point operational since July 2022 #### Air Pollution in Fast-growing Tropical Megacities Adapted image: https://medium.com/ensia/here-come-the-megacities-1b0f8a2287f2 Projections: https://journals.sagepub.com/doi/full/10.1177/0956247816663557 The largest cities the world has ever seen will be in the tropics # **An Unjust Monitoring Network** ## Surface Measurements Progressed from Severely Limited #### **Snapshot in 2018** [OpenAQ, Accessed 7 November 2018] #### **To Limited Coverage Today** #### **Snapshot in 2023** [OpenAQ, Accessed 15 March 2023] Increasing data coverage in the tropics due to low-cost sensor technology and data processing revolution and perhaps a shift in data access/sharing culture ## Satellite in LEO Offer Daily Global Coverage OMI NO₂: component of NO_x **OMI HCHO**: ubiquitous oxidation product of VOCs **IASI NH₃**: agriculture, fires, waste burning and precursor of PM_{2.5} **MODIS AOD**: proxy for surface $PM_{2.5}$ Combine multiple pollutants to better interpret drivers of air quality degradation # Steep Annual Increases in NO_x and NH₃ NO_2 trends (proxy for NO_x) [2005-2018] > OMI: Ozone Monitoring Instrument NH₃ trends (depends on acidic aerosol abundance) [2008-2018] IASI: Infrared atmospheric sounding interferometer **Circle Features:** Size: start of record Color: trend **Outline:** significant Decline over Indian subcontinent due to increase in uptake to acidic aerosols NH₃ data from M. Van Damme, L. Clarisse, P.-F. Coheur at ULB #### Annual Changes in PM_{2.5} and Ozone Production Regime **AOD** trends (proxy for **PM**_{2.5}) [2005-2018] **MODIS**: Moderate resolution imaging spectroradiometer HCHO/NO₂ trends (proxy for ozone production regime) [2005-2018] Circle Features: Size: start of record Color: trend Outline: significant Increases in PM_{2.5} precursors SO₂, NH₃, NO_x #### **Ratio > 5**: O₃ production sensitive to NO_x Transitioning to NO_x saturated or VOC sensitive #### What's Driving the Observed Trends? We use a statistical approach and knowledge of seasonality of emissions to assess the relative role of anthropogenic and biomass burning emission Consistency in trends for anthropogenic influenced months and all data months supports anthropogenic emissions as air pollution trend drivers with some offsetting from decline in agricultural activity #### City Drivers and Trends Differ from Regional/National Scale Well known decline in biomass burning activity in Africa causing regional decline in NO₂ Led to conclusion that socioeconomic development in Africa is not associated with air quality degradation Not the case if targeted sampling of city Instead, tropical cities on track to follow the same trajectory as past fast-growing cities #### Increase in urban population exposure to air pollution Unprecedented increase in exposure due to rapid air quality degradation, increase in population and urbanization Up to 18 % a⁻¹ increase in PM_{2.5} in India Up to 23% a⁻¹ increase in NO₂ in many cities Population growth [% a⁻¹] #### Premature Mortality Attributable to Rise in PM_{2.5} Exposure Ranking of cities with greatest health burden Highest ranked are almost all in Asia. Worst effects in Africa buffered by improvements in healthcare. # Slicing the Atmosphere with Clouds to Map NO₂ Profiles Clusters of partial columns above optically thick clouds: vertical column densities (VCDs): Description ΔP ΔVCD VCD [μmol/m²] Calculate average mixing ratio between target pressure ranges: $$NO_2 VMR = \frac{\Delta VCD}{\Delta P} \times const$$ # Jun-Aug **Dec-Feb** 9-12 km 6-9 km 4-6 km 2-4 km < 2 km NO₂ [pptv] # NO₂ Vertical Profiles from Cloud-Slicing TROPOMI [Horner et al., in prep] #### **Comparison to NASA DC8 Campaign Observations** Encouraging agreement in middle troposphere and marine boundary layer ## Sensitivity to Lightning NO_x over Land Observed versus modelled June-August upper tropospheric regional mean NO₂ over land Original model emissions of 1.4 Tg NO, whereas 2.7 Tg NO required to match cloud-sliced NO₂ ## Sensitivity to lightning NO_x over the Ocean Observed versus modelled June-August upper tropospheric regional mean NO₂ over the ocean Original model emissions of **0.3 Tg NO**, whereas **1.9 Tg NO** required to match cloud-sliced NO₂ #### Additional Gains Enabled by a GEO Instrument #### *** Not an exhaustive list *** Address an environmental injustice in air quality monitoring Better match temporal variability of air pollution and exposure Extend health risk assessment to short-term exposure to pollution episodes Additional constraint of time component for enhanced source attribution Greater data density for cloud slicing Separating free troposphere from boundary layer using cloud-slicing may enhance diurnal variability information obtained from geostationary instruments Greater data density and for oversampling to fine scales injustices in exposure Temporal variability in the contribution of the mid troposphere to the tropospheric column