Sleuthing Emergent Air Pollution:

From fast-growing tropical cities to the nascent space tourism industry
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Stricter World Health Organization (WHO) guidelines
(https://apps.who.int/iris/handle/10665/345329)

WHO Annual Air Quality Guidelines [ug m=
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Megacities of the future

By 2100, most of the largest cities will be in tropical Africa and Asia
Greatest air quality knowledge gaps are in African megacities (WHO, 2021)

Largest cities in 2020
2100 Kabul: 50 million Delhi: 57 million (population in millions):
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Niamey: 56 million—

Cairo (20)
Mumbai (20)
Beijing (20)
Dhaka (20)
0. Osaka (19)

Lagos: 88 million
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Kinshasa: 84 million Mumbai: 67 million

Adapted image: https://medium.com/ensia/here-come-the-megacities-1b0f8a228712
Projections: https://journals.sagepub.com/doi/full/10.1177/0956247816663557
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Fastest-growing cities are In the tropics

Air quality trends in the 46 fastest-growing cities in tropical Africa, Asia and the Middle East
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Regional annual projected population growth rates for 2020-2100 [Hoornweg & Pope, 2017]:
3-31% for Africa, 0.8-3% for South Asia, 0.5-7% for Southeast Asia



Long and consistent record of air pollution from space
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Space-based constraints on air pollution:  |ASI: NH,
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Steep annual increases in NO, and NH;
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Annual changes in PM, ; and ozone production regimes
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What’s driving the observed trends?

Challenging to answer with limited/no surface observations and questionable emission inventories

OMI NO, (NO,)
2.5 % a (p-value = 0.05)
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We use a statistical approach and knowledge of seasonality of emissions to assess the relative role of

Biomass burning trends

Anthropogenic activity
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What’s driving the observed trends?

anthropogenic and biomass burning emission

Trends in all monthly data [% a']

as air pollution trend drivers with some offsetting from decline in agricultural activity
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Unprecedented air pollution exposure trends

Effect of combined rise in air pollution and population on urban exposure to air pollution

Steep increases in PM, 5 in India
(up to 18 % a™)

Steep increases in NO, everywhere
(up to 23% a)

Many adverse health outcomes from
exposure to PM, s and NO,

Incidence of premature mortality most
severe for PM, 5

Trends [% a™] Population growth [% a™]
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Determine premature mortality attributable to PM, - exposure

More cohorts, greater PM, s range, more health
endpoints than previous approaches.

Led to very large premature mortality estimate from
fossil fuel combustion:
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10 20 30 40 10 million premature deaths (63% in India and China)

PM, s [ug m3] [Vohra et al., 2021]

Relate ambient PM, 5 to premature mortality using concentration-response curve from Joel Schwartz's group
Use GEOS-Chem 2012 PM, 5 and AOD trends to calculate PM, 5 at in 2005 (start) and 2018 (end) of the record



Premature mortality attributable to rise in PM, ; exposure
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Africa Kinshasa Increase in excess deaths,
Jakarta €— despite emission controls
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Increase in premature deaths from 2005 to 2018

25000

Total: 179,550

[95% CI: -227,131 to 586,231]

Highest ranked are almost all in Asia.

Africa likely to be ranked higher for adverse health effects of increases in exposure to NO,



Conclusions

« Steep increases in air pollution, precursors, and urban exposure driven by
anthropogenic activity (policies need to be developed to target these!)

» Total premature mortality of 180,000 from 2005 to 2018 over cities where we can
derive PM, 5 trends

* Worst health burden for cities in Asia, but steep increases in air pollution and
forecast population growth suggest African cities are poised for a health crisis

« Routine, reliable, publicly accessible ground-based measurements of air quality
are crucial

Reference:
Karn Vohra, E. A. Marais, W. J. Bloss, J. Schwartz, L. J. Mickley, M. Van Damme, L. Clarisse, P.-F.
Coheur, Severe health burden in tropical future megacities from rapid rise in anthropogenic air
pollution and population, in review, Science Advances.




An emerging source: Power barges (powerships)

Natural gas operated powerships

Generating capacity has increased
13-fold in a decade

A popular quick to install gas-to-electricity option in Africa, Asia, the Middle East and the Caribbean.

Emission factor and local air pollution and methane leakage measurements are needed to assess
influence on air quality and climate



Impact of the rocket launches on the atmosphere

Space industry no longer dominated by Russia and the US. Even the UK has joined the race!

Space launches by country since dawn of space race
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Space industry anticipated to grow from £350 million industry in 2019 to > £1 trillion by 2040
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Surge in returning space junk and reusable rockets

Re-entry burn produces ~17.5 mass % NO, for heat shields of reusable components and 100% for
complete burn-up

Spent satellites and space debris (as old as the space race), discarded boosters and rocket stages,
reusable rockets stages, space capsules/shuttles/pods/planes

Number of re-entries

1960 1970 1980 1990 2000 2010 2020
Year

Data Source: ESA (hitps://discosweb.esoc.esa.int/)
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The nascent (exclusive) space tourism industry
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Geographic distribution of launch sites and fuels used
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Number of launches at each site in 2019
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Space tourism: solid (rubber) [Virgin Galactic], hydrogen [Blue Origin], kerosene [SpaceX]
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Launches
(Re-entries) (16) (8) (24) (17) (16) (10) (17) (18) (8) (11) (18) (22)

Emissions (tonnes)
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All emissions are relatively small, but most released directly released to the upper atmosphere

Total emissions from purposeful rocket launches
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Conduct decade-long simulation with 5.6% a! increase in emissions.
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Effect of purposeful rocket launches on stratospheric ozone

Difference between simulation with and without rocket emissions averaged from 200 to 1 hPa
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O; and Cl, take ~4 years to establish, NO, ~2 years, CH, continues to decay

Greatest ozone loss occurs in the upper stratosphere (~5 hPa)




Effect of space tourism on stratospheric ozone
Change in upper stratospheric ozone in the upper latitudes (60-90° N/S)
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Space tourism simulation suggests ozone depletion of ~0.3% decade-"
This is ~20% of the upper stratospheric ozone recovery in northern hemisphere of 1.6% decade™’

Value for southern hemisphere conservative, as 2019 was anomalously warm over Antarctica



Effect of space tourism on climate
*PRELIMINARY*
All-sky top-of-atmosphere radiative forcing due to purposeful rocket launches
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Global annual

mean:
4.7 mW m2

£ atmene T

Biggest impact is from BC (warming) offset slightly by decline in CH, and stratospheric ozone

~0.01 % of global BC emissions, 2% of BC radiative forcing.

12 mW m=2 (Gg BC)! suggests space tourism (0.8 Gg BC) scenario is ~10 mW m-
(4% of global radiative forcing due to BC and a third of radiative forcing of aviation industry emissions)



Conclusions

* Impact of purposeful rockets on stratospheric ozone quite small, assuming no
dramatic increase in launches.

« Large relative influence of BC emissions on radiative forcing

« Space tourism scenario has potential to undermine Montreal Protocol progress in
repairing the ozone layer and contribute substantial warming from BC emissions

« Lots of caveats: radiative forcing excludes alumina particles, lots of other chemicals
produced from rocket fuel and re-entry burn, re-entry burn NO, emissions uncertain

« Regardless, no international regulation imposed on “tail-pipe” rocket emissions, so
nothing to stop the use of the most hazardous fuel types.

Reference:
Robert G. Ryan, E. A. Marais, C. J. Balhatchet, S. D. Eastham, Impact of rocket launch and space
debris air pollutant emissions on stratospheric ozone and global climate, to submit to Earth’s Future.




