Bridging knowledge gaps in atmospheric science:
From tropical cities to the remote troposphere and the mesosphere 50-80 km aloft
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The largest future megacities are all in the tropics

Mostly in tropical Africa and Asia, where air quality knowledge gaps are largest

Kabul: 50 million Delhi: 57 million

Khartoum: 57 million
Dhaka: 54 million

Niamey: 56 million

Lagos: 88 millio Kolkata: 52 million

Kinshasa: 84 million Mumbai: 67 million

Largest cities in 2020
Delhi
Shanghai T
Sao Paulo 38
Mexico City
Cairo
Mumbai
Beijing
Dhaka
Osaka 19

Adapted image: https://medium.com/ensia/here-come-the-megacities-1b0f8a228712

Projections: https://journals.sagepub.com/doi/full/10.1177/0956247816663557
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[Image credit: Gongda Lu]
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Fastest-growing cities are In the tropics

Population growth in the 46 fastest-growing cities in tropical Africa, Asia and the Middle East
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Regional annual projected population growth rates for 2020-2100 [Hoornweg & Pope, 2017]:
3-31% for Africa, 0.8-3% for South Asia, 0.5-7% for Southeast Asia



NO, trends

(proxy for NO,)
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Annual changes in PM, ; and ozone production regimes
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What’s driving the observed trends?

We use a statistical approach and knowledge of seasonality of emissions to assess the relative role of
anthropogenic and biomass burning emission
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Consistency in trends for anthropogenic influenced months and all data months supports anthropogenic emissions
as air pollution trend drivers with some offsetting from decline in agricultural activity



Increase in urban population exposure to air pollution

Combined effect of rapid air quality degradation,

\’e-.f' | 7 increase in population and urbanization
P90 ‘
: £ Up to 18 % a' increase
in PM, s in India
| PM, s
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’ ﬁ K( health outcomes leading to premature death

Up to 23% a! increase
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Premature mortality attributable to rise in PM, ; exposure

Ranking of cities with greatest health burden

Dhaka

Mumbai

Percent contribution of individual factors

Africa
Middle East PV,
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Southeast Asia Mortality
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Total: 179,550
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Increase in premature deaths from 2005 to 2018

25000 [95% CI: -227,131 to 586,231]

Highest ranked are almost all in Asia. Worst effects in Africa buffered by improvements in healthcare.




Take-homes and additional findings from this work

Shift in dominance from traditional (biomass burning) to a mix of anthropogenic sources
Trends in cities opposite to national and regional trends in Africa

Inventories underestimate growth in precursor emissions suggested by trends from
satellite observations

Ozone production transitioning to dependence on volatile organic compounds that are
more challenging than NO, to regulate

Health impacts in cities in Asia likely to occur in cities in Africa in the next 2-3 decades

Link to paper: https://www.science.org/doi/reader/10.1126/sciadv.abm4435

Link to New York Times article:
https://www.nytimes.com/2022/04/08/climate/air-pollution-cities-tropics.html
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Reactive nitrogen in the remote troposphere

Key to formation of the greenhouse gas tropospheric ozone, but observations are limited

Limb-viewing instruments not sensitive to

Nadir-viewing instruments observe the whole column

troposphere
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Aircraft observations limited in space and time



Cloud-slicing satellite observations to address data scarcity

Clusters of partial columns above optically thick clouds:
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Calculate average mixing ratio between target pressure ranges:

Regress cloud top pressures against partial
vertical column densities (VCDs):
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Application to high-resolution TROPOMI instrument

UV/vis spectrometer
13h30 overpass time
Daily global coverage

5.6 km x 3.5 km resolution




TROPOMI validation with MAX-DOAS during 2022 heatwaves

UCL MAX-DOAS
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Seasonal means of NO, in the upper troposphere

Seasonal means at 8-12 km Evaluation against product from OMI
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Vertical profiles of NO, derived with the TROPOMI instrument

Vertical profiles in Jun-Aug
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Cloud-sliced product validation with aircraft observations

INTEX-A

[Altitude, km)]

Data provided by NASA DC8 Science Teams



Cloud-sliced product validation with aircraft observations

Comparison of collocated NO, mixing ratios in June-August

Eastern US Central Pacific
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Regional sensitivity to lightning NO, emissions




Regional mean NO, [pptv]

egional mean NO, [pptv]
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Regional sensitivity to lightning NO, emissions

Observed versus modelled June-August upper tropospheric regional mean NO, over land
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Regional sensitivity to lightning NO, emissions

Observed versus modelled June-August upper tropospheric regional mean NO, over the ocean
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Frequency

Lightning characteristics over the ocean and over land

Support for larger, more persistent and higher energy lightning flashes over the ocean than over land

Frequency distribution for all radar precipitation
features with lightning

Radlance per flash [Jlmzlsr/um]
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Concluding Remarks

Cloud-sliced profiles of NO, in the mid-troposphere consistent with aircraft observations

GEOS-Chem reproduces observations over land, but has a large low bias over the
remote ocean

Modelled regional mean NO, sensitive to lightning NO, emissions

Addressing the model bias requires almost 3-fold increase in global lightning NO,
emissions with implications for tropospheric ozone production



Environmental impact of the modern space sector
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Number of rocket launches per country in each year

® Soviet Union/Russia

@ United States of America
@ France/European Union
® Japan

® ltaly

® Australia

@ People's Republic of China
® India

@ lsrael

©® Kazakhstan

® Brazil

@ North Korea

@ international organization
® Iran

® South Korea

® New Zealand

More diverse space sector than the original space race

Even the UK is
joining the race:




Dramatic increase in objects in space

Number of objects launched each year
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Image from ESA’'s Annual Space Environment Report, 2022

Only viable disposal method is complete burn up by re-entering Earth’s atmosphere



Air pollutant emissions from rocket launches

Solid Hypergolic Kerosene

Cryogenic

NO,
H,O
BC




Air pollutant emissions from rocket launches

Solid Hypergolic Kerosene

Cryogenic

NO,
H,0
NO,
H,0
BC Climate
concern




Air pollutant emissions from rocket launches

Solid Hypergolic Kerosene

Cryogenic

NO,
H,O
NO,
H,O
BC Ozone
depletion




Air pollutant emissions from re-entry
y - &
Meteqrs | "~ NO, ’

2-40 Gg NO, per year

Debris




Calculate and map a single year of emissions

USA
10.7 Gg

French Guiana
3.8Gg

Iran
0.1Gg

"

Number of Launches in 2019

1 @ 5 @ 10

Hypergolic

B Hydrogen

Bl Solid

Kazakhstan
5.5Gg

New Zealand
0.1Gg

Russia
1.9 Gg

Japan
0.5 Gg

China
8.0 Gg

Annual Emissions:

H,O: 11 Gg

BC: 0.5 Gg

Al,O;: 2 Gg

HCI: 1 Gg

Launch NO,: 0.2 Gg
Re-entry NO,: 2 Gg

~100 successful launches in 2019
Reaches 135 in 2021. Already 148 in 2022.

Artificial NO, similar
to lower end estimate
of natural NO,




Incorporate these in GEOS-Chem

GEOS-Chem extends
to 80 km

Stratosphere & mesosphere:
lifetime >2 years
(gravitational settling)

Troposphere:
lifetime weeks to months

(wet and dry deposition,
subsidence, chemical losses)
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Radiative forcing due to black carbon emissions

After 10 years of emissions assuming modest growth Mostly due to BC
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Rockets ~3% of BC radiative forcing from all anthropogenic sources, but only 0.01% of emissions.
BC from rockets 400-500 times greater radiative effect than BC from Earth-bound sources

SpaceX Starship mission plan is 3 launches per day, so 10-fold increase in annual launches



Stratospheric ozone depletion due to 2019 rockets and re-entry
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Springtime Arctic upper stratospheric ozone depletion reaches ~0.15% after a decade of launches
This is ~10% of upper stratospheric ozone recovery attributed to Montreal Protocol ban on ODS



Recent and anticipated megaconstellations
SpaceX StarShip

Raptor

SpaceX StarLink
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Take-homes and future work

Re-entry NO, comparable with lower end estimate of natural NO, from meteorites

Ozone depleting chemicals have a very local effect on upper stratospheric springtime
Arctic

Positive radiative forcing due to BC of most concern. Exacerbated by anticipated
growth in space sector.

Lots to do on this topic! Account for re-entry emissions of metal oxides, use the current
observing system to detect signals associated with launch and re-entry emissions.

Link to paper: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EF002612

Media coverage by BBC, Times, Forbes, MSN, Sky and many more.
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