Current Emissions Estimate Capabilities with EO Atmospheric Composition and Air Quality Group

https://maraisresearchgroup.co.uk/

Broad objective is to derive independent emissions estimates to compare to bottom-up (inventory) emissions to identify discrepancies that require further investigation

Disclaimer: Not exhaustive! Notable omission is long-lived pollutants (carbon monoxide) & greenhouse gases (methane, nitrous oxide and carbon dioxide)

Eloise A. Marais (<u>e.marais@ucl.ac.uk</u>)

14 Nov 2024

Gridded or Area Emissions

Satellite observations of air pollutants resolve hotspots and large area emissions

TROPOMI NO₂ on April 2018

IASI NH₃ on annual mean (2008-2018)

TROPOspheric Monitoring Instrument (TROPOMI):

UV-visible spectrometer with ~5-7 km resolution

Infrared Atmospheric Sounding Interferometer (IASI):

Infrared spectrometer with ~13 km resolution

Gridded or Area Emissions

Convert atmospheric column concentrations to surface emissions using a model

More complex inversion techniques using adjoints, machine learning, Lagrangian models tracking plumes

Preprocess to Grid to Finer Resolution than Instrument

Use so-called oversampling to enhance spatial resolution relative to native resolution of instrument

Target grid (10 km) Area of overlap Satellite pixel (12-39 km)

Weights pixel by area of overlap

Lose time (temporal) resolution; gain spatial resolution

Improve resolution from 12-40 km to 10 km for an instrument observing ammonia (NH₃)

Oversampling Technique

Gridded Emissions of Ammonia (NH₃) from Agriculture

Satellite vs inventory NH₃ emissions: spatial distribution

Comparison of months with peak emissions according to IASI (April and July)

Large July difference over locations dominated by dairy cattle. Inventory is 27-49% less than the satellite values.

Satellite vs inventory NH₃ emissions: seasonality

Seasonality shown as emissions in each month relative to June

All reproduce spring April peak (fertilizer & manure use). Only the satellite show summer July peak (dairy cattle?). The increase in emissions in September in CrIS is spurious.

Point Source or Hotspot Emissions

Derive NO_x emissions of isolated hotspots viewed by UV-visible space-based sensors

Obtain total NO_x emissions for the whole hotspot

Also applied to satellite observations of formaldehyde (HCHO) to calculate HCHO hotspot emissions

Point Source or Hotspot Emissions

Example applications to cities, power plants and industrial areas in Sub-Saharan Africa and UK cities

Wei et al., in prep

Very High Spatial Resolution Emissions

 NO_x emissions calculated from instruments designed to monitor terrestrial resources and land use Progress from kilometre to <100 m scale

Potential UK applications: industrial and energy (CHP) sources, urban congested roadways, airports

Ground-truthing Remains a Key Challenge!

Network (points) and model (background) surface NH₃ in Mar-Sep

Points are for DELTA instruments (blue circles)

 4 DELTA instruments support model underestimate
(NMB = -38%)

So do passive low-cost ALPHA instruments (yellow triangles) (**NMB = -41.5%**)

GEOS-Chem underestimate in surface NH_3 driven with the NAEI corroborates results from IASI

Leads to reluctance to uptake by inventory developers and integration in policy decisions

In Summary

- Calculate area emissions for sources like agriculture and biogenic volatile organic compounds (specifically, isoprene)
- Achieve finer scales than native resolution of instrument with gridding techniques like oversampling
- Calculate point source or hotspot emissions by resolving the hotspot plume and fitting a Gaussian-type function
- Derive 10-60 m resolution emissions by retrieving air pollutant concentrations from land-surveying instruments
- Compare satellite-derived emissions to bottom-up (inventory) estimates to identify differences that should be investigated further
- Ground-truthing remains an issue to extent utility beyond research
- Lots of caveats and sources of uncertainty that will be covered in the next presentation by Dr Richard Pope

Links to Cited Peer-reviewed Studies

- Van Damme et al., ERL, 2021: <u>https://iopscience.iop.org/article/10.1088/1748-9326/abd5e0</u>
- Marais et al., JGR, 2021: <u>https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JD035237</u>
- Hellsten et al., 2008: <u>https://doi.org/10.1016/j.envpol.2008.02.017</u>
- Pommier et al., 2023: <u>https://pubs.rsc.org/en/content/articlelanding/2023/ea/d2ea00086e</u>
- Varon et al., 2024: <u>https://www.pnas.org/doi/10.1073/pnas.2317077121</u>