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The rise of satellite megaconstellations (SMCs)

SpaceX Starlink

~ 540,000 extra SMC satellites planned for Low Earth Orbit. New sustainability and debris guidelines will
contribute to rapidly increasing launch rates and re-entry mass.



Accelerating payload launch and re-entry rates
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Air pollutant emissions from SMCs
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Unlike surface sources, pollutants are injected directly into all atmospheric layers. ~10% of
stratospheric aerosol particles contain elements from satellite and rocket re-entries.



Stratospheric ozone depletion from rocket launches and re-entries 110D

Impact of a decade of increasing 2019
rocket launch and re-entry emissions
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Radiative forcing from rocket launches and re-entries

Impact of a decade of increasing 2019 rocket launch and re-entry emissions
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Constructing vertical launch emission profiles Pad

Mass Emissions(g) = Propellant consumed (kg) XEmission Index (g kg™1)
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Emissions are a combination of propellant combustion and afterburning reactions in the hot rocket plume.

Source: Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate, https://doi.org/10.1029/2021EF002612
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Validating our emission profiles with existing launch data

Collating data from launch livestreams Comparing Propellant Consumption Profiles
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Converting re-entry mass to upper atmosphere emissions TP
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[Schulz, L. & Glassmeier, K. H. 2021, Jain 2023]
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Mapped re-entry mass and emissions AT,
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Increasing re-entry mass and emissions (3.15-4.97 Gg) now roughly 40% of
natural influx, partly driven by satellite megaconstellations (18-25%).
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Vertical distribution of rocket launch and re-entry emissions Tl e
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Much lower emissions than surface sources, however most BC, NO,, H,0,
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Annual emission totals for all rocket launches and re-entries
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Annual emissions are rapidly increasing as propellant consumption grows.
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Putting rocket launch CO, emissions in context

CO; Emissions (Jan-Jul 2022)
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Space industry CO, emissions in early 2022 were similar to the celebrities with the

Just Plane Wrong: Celebs with the Worst Private Jet Co2 Emissions, Yard, 2022, https://weareyard.com/insights/worst-celebrity-private-jet-co2-emission-offenders

highest private jet emissions.
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SMCs present a growing contribution to total emissions

Megaconstellation rocket
launches and re-entries
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Implementation of space industry emissions in GEOS-Chem
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SMCs cause minimal O; loss GE.i'S-Chem +RRTMG T
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The space industry decreases radiative flux at the tropopause

All rocket launches and re-entries
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~30% of BC emissions are from SMCs, resulting in a
small tropospheric cooling effect from SMCs.
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Conclusions and next steps

- Developed emission inventories for 2020-2022 SMC and non-SMC emissions.
- Increasing propellant consumption and re-entry mass from 2020-2022, partly from SMCs.
- Increasing contribution of SMCs to emissions, especially carbon-based.

- Preliminary results demonstrate immediate environmental impacts.

- 8-years of increasing rocket launch and re-entry emissions reverse 9% of Montreal Protocol gains.
- SMCs cause negligible O; depletion but lead to large increases in stratospheric BC of +400%.
- Increasing rocket launch and re-entry emissions cause decrease in net radiative flux at tropopause.

- Next steps:

- Finish simulating the impacts of a decade of launch and re-entry emissions on stratospheric ozone and climate.
- Run sensitivity simulations.

Contact: Connor Barker (connor.barker@ucl.ac.uk)
[Images from SpaceX, OneWeb, ULA, and media reports]
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