

A Global, 3D Inventory of Satellite Megaconstellation Emissions from Rocket Launches and Satellite Re-Entries: Impacts on Stratospheric Ozone and Climate

The rise of satellite megaconstellations (SMCs)

~ 540,000 extra SMC satellites planned for Low Earth Orbit. New sustainability and debris guidelines will contribute to rapidly increasing launch rates and re-entry mass.

Accelerating payload launch and re-entry rates

Most payloads deployed to orbit are for SMCs, and SMC launch rates are increasing.

Future Re-entry Projections

ESA predict increasing atmospheric re-entries from constellations.

Air pollutant emissions from SMCs

Launches (all atmospheric layers)

Hydrogen
Delta IV Heavy
LOX / LH₂
H₂O
Thermal NO_x

Reentries (upper atmosphere)

Payload/Rocket Thermal NO_x Al₂O₃

Unlike surface sources, pollutants are injected directly into all atmospheric layers. ~10% of stratospheric aerosol particles contain elements from satellite and rocket re-entries.

Stratospheric ozone depletion from rocket launches and re-entries

Total Ozone - Nov 2023

 O_3 loss over 60-90°N is ~10% of recovery from Montreal Protocol.

Driven by Cl_y and NO_x emissions.

Radiative forcing from rocket launches and re-entries

Impact of a decade of increasing 2019 rocket launch and re-entry emissions

BC emissions drive warming and are 375x more efficient than surface sources.

How does introduction of SMCs and rise in launch and re-entry rates affect ozone and climate?

Constructing vertical launch emission profiles

 $Mass\ Emissions(g) = Propellant\ consumed\ (kg) \times Emission\ Index\ (g\ kg^{-1})$

Emissions are a combination of propellant combustion and afterburning reactions in the hot rocket plume.

Validating our emission profiles with existing launch data

Collating data from launch livestreams

Comparing Propellant Consumption Profiles

Our methodology is 17% higher than the livestream method, diverging most in the mesosphere.

Converting re-entry mass to upper atmosphere emissions

Conversion to emissions requires broad assumptions on ablation, chemical composition, and aerosol properties.

Mapped re-entry mass and emissions

Increasing re-entry mass and emissions (3.15-4.97 Gg) now roughly 40% of natural influx, partly driven by satellite megaconstellations (18-25%).

Vertical distribution of rocket launch and re-entry emissions

Much lower emissions than surface sources, however most BC, NO_x , H_2O , CO, CI_v , and AI_2O_3 emissions were injected above the tropopause in 2022.

Annual emission totals for all rocket launches and re-entries

Annual emissions are rapidly increasing as propellant consumption grows.

Continued emissions of ozone depleting substances.

Putting rocket launch CO₂ emissions in context

Space industry CO₂ emissions in early 2022 were similar to the celebrities with the highest private jet emissions.

SMCs present a growing contribution to total emissions

Megaconstellation rocket launches and re-entries

Proportion of annual emissions from SMCs

SMC proportion is increasing annually, highest proportions for carbon emissions (BC, CO, CO₂).

Implementation of space industry emissions in GEOS-Chem

Chemical transport model is limited by resolution and altitude (0-80km) but can monitor the impact of rocket launch / re-entry emissions on global atmospheric composition and climate.

Minimal O_3 loss from SMCs but significant BC emissions. O_3 loss after 8 years is ~9% of Montreal recovery.

Cl_y peak and O₃ loss occur simultaneously, much lower ozone depleting emissions for SMCs.

The space industry decreases radiative flux at the tropopause

All rocket launches and re-entries

Increased stratospheric BC burden results in a decrease in net radiative flux at the tropopause, dominated by SW.

GE@S-Chem + RRTMG Preliminary Results

All rocket launches and re-entries

SMC rocket launches and re-entries

~30% of BC emissions are from SMCs, resulting in a small tropospheric cooling effect from SMCs.

Conclusions and next steps

Developed emission inventories for 2020-2022 SMC and non-SMC emissions.

- Increasing propellant consumption and re-entry mass from 2020-2022, partly from SMCs.
- Increasing contribution of SMCs to emissions, especially carbon-based.

Preliminary results demonstrate immediate environmental impacts.

- 8-years of increasing rocket launch and re-entry emissions reverse 9% of Montreal Protocol gains.
- SMCs cause negligible O_3 depletion but lead to large increases in stratospheric BC of +400%.
- Increasing rocket launch and re-entry emissions cause decrease in net radiative flux at tropopause.

Next steps:

- Finish simulating the impacts of a decade of launch and re-entry emissions on stratospheric ozone and climate.
- Run sensitivity simulations.

