Megaconstellation mission emission inventory development for determining the impact on stratospheric ozone and climate

Connor R. Barker¹ (connor.barker@ucl.ac.uk), Eloise A. Marais¹, Jonathan C. McDowell²

1. Department of Geography, University College London, London, UK

2. Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

1. Satellite Megaconstellations

 Megaconstellations are driving a recent surge in rocket launches and re-entry destruction of spent satellites, with 997 megaconstellation satellites launched in 2020, rising to 1839 in 2022.

• However, the environmental impact of satellite megaconstellations remains uncharacterized and unregulated.

 We develop emission inventories of the dominant pollutants from megaconstellation and nonmegaconstellation rocket launches and re-entries in 2020 to determine the impact of satellite megaconstellations on climate and stratospheric ozone.

2. Environmental Impact of Emissions

Hydrogen **Delta IV Heavy** LH₂ / LOX H_2O $NO_{x}(2^{\circ})$

Hypergolic Proton-M N_2O_4 / UDMH $NO_{x} (1/2^{\circ})$

Solid Long March 11 AI / NH₄CIO₄ / HTPB H₂O (Water) CO (Carbon Monoxide) NO_x (2°) (NO+NO₂) BC (Black Carbon) Cl_v (Cl+Cl₂+HCl) Al_2O_3 (Alumina)

• We compile information on 44 rockets (propellant type/mass, stage mass), 115 launches (time, geolocation, rocket) and 807 re-entries (time, geolocation, mass, ablation) in 2020.

The emissions are distributed hourly at a resolution of 4° x 5°, over 47 vertical layers from 0-80 km, for simulation in the GEOS-Chem chemical transport model. Al₂O₃ and BC emissions are added as radiative species.

3. Vertical Propellant Consumption

- The altitude range of each rocket stage propellant burn varies between launch vehicle and mission.
- The mass of propellant consumed in each vertical layer is calculated by combining:
 - Literature estimates of the propellant consumption (1).
 - b) Specific launch profiles for each rocket.
- Overall, 79% of the rocket launch emissions are calculated to occur within the GEOS-Chem limits.

6. Final Emission Distributions

- Total propellant mass consumption (37.2 Gg) has increased by 16% relative to 2019.
- Propellant mass consumption from megaconstellations (MC) was 8.3 Gg in 2020.

Vertical Emission Indices

Mass Emissions (g) = Propellant consumed (kg) × Emission Index (g kg⁻¹)

- 1º emission indices include propellant burning emissions only.
- 2º emission indices (included here) also account for additional oxidation in the hot rocket plume and changes in atmospheric composition with altitude.

50-60 40-50 30-40 MC Total 0.40 1.10 CO 25-30 0.07 1.82 Al₂O₃ 20-25 0.00 0.07 CI 15-20 0.00 0.50 HCI 0.00 0.21 Cl2 10-15 5-10

- Calculated 2020 reentry Al₂O₃ deposited to the mesosphere (0.64 Gg) is more than twice the reported natural contribution from meteorites.
- The short lifetime of megaconstellation satellites (2-5 years), and increasing payload launch rate is likely to increase future megaconstellation emissions.

5. Object Re-entries

- Data is compiled from online repositories for all payloads, components, and rocket bodies re-entering from above 50 km in 2020.
- Chemical composition, mass ablation profiles and object reusability are used to determine the mass of Al₂O₃ released into the upper atmosphere.
- Where geolocation data is not available, coordinates are randomly assigned with latitude bounded by the orbital inclination.

Longitude / Degrees From Database **Bounded Random**

(A) AEROSPACE

esa

6. Summary and Next Steps

Separate emission inventories for SMC and non-SMC rocket launch and satellite re-entry emissions compiled for 2020.

% of Total Emissions

- Launch emissions are calculated using rocket-specific launch profiles and altitude-dependent chemistry.
- Re-entry emissions of Al₂O₃ are calculated using object ablation and object composition data.

Next steps

60-70

- Calculate 2021/2022 emissions.
- Add gravitational settling of emissions above 80 km.
- Use GEOS-Chem to simulate the impact of a decade (2020-2029) of megaconstellation emissions on stratospheric ozone and climate.

7. References

- Ross, M.N. and Sheaffer, P.M. (2014), Radiative forcing caused by rocket engine emissions. Earth's Future, 2: 177-196. https://doi.org/10.1002/2013EF000160
- Ryan, R. G., Marais, E. A., Balhatchet, C. J., & Eastham, S. D. (2022). Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earth's Future, 10, e2021EF002612. https://doi.org/10.1029/2021EF002612
- Satellite/rocket images obtained from Wikipedia, SpaceX, OneWeb, United Launch Alliance, Sputnik News, CALT, ESA.