Developing inventories of by-products from satellite megaconstellation launches and disposal to determine the influence on stratospheric ozone and climate

The rise of satellite megaconstellations (SMCs)

~ 540,000 extra SMC satellites planned for Low Earth Orbit. New sustainability and debris guidelines will contribute to rapidly increasing launch rates and re-entry mass.

Air pollutant emissions from satellite megaconstellations

Launches (all atmospheric layers)

Hydrogen
Delta IV Heavy
LOX / LH₂
H₂O
Thermal NO_x

Methane Zhuque-2 LOX / CH₄ H₂O CO BC Thermal NO_x

Hypergolic
Proton-M
N₂O₄ / UDMH
H₂O
CO
BC
Thermal NO_x
Fuel NO_x

Solid
Long March 11
AI / NH₄CIO₄ / HTPB
H₂O
CO
BC
Thermal NO_x
Fuel NO_x
Chlorine
AI₂O₃

Reentries (upper atmosphere)

Payload/Rocket Thermal NO_x Al₂O₃

Pollutants released in all atmospheric layers.

Rocket launch and re-entry emissions affect ozone and climate

Stratospheric Ozone Depletion

Impact of a decade of increasing 2019 rocket launch and re-entry emissions

TOA Radiative Forcing

Global climate forcing at TOA is driven by BC emissions.

Creating a vertical distribution of launch emissions

Conversion of re-entry mass to upper atmosphere emissions

Re-entry mass has increased since 2020 (3.27-5.59 Gg, 878-1650 objects), partly driven by satellite megaconstellations (17-23%). Conversion to emissions requires broad assumptions on ablation and chemical composition.

[Schulz, L. & Glassmeier, K. H. 2021, Jain 2023]

Vertical distribution of emissions for all rocket launches and re-entries (2022)

Most BC, NO_x , H_2O , CO, CI_y , and AI_2O_3 emissions are injected above the tropopause.

Satellite launch and re-entry emission inventory

Anthropogenic re-entry NO_x (1.60 Gg) is approaching the natural injection (2-40 Gg).

Kerosene fuel dominates megaconstellation launches, reducing harmful Cl_v and Al₂O₃ emissions.

Rocket launch and re-entry emissions deplete ozone and affect climate

Global stratospheric ozone depletion after 2.5 years is approaching 10-year loss in Ryan *et al.* 2022 (-0.01%).

Conclusions, uncertainties and next steps

Compiled emission inventories for 2020-2022 SMC and non-SMC emissions.

- Launch and re-entry have risen from 2020-2022 for megaconstellation and non-megaconstellation sources.
- Anthropogenic alumina re-entry emissions have exceeded the natural meteoritic injection.

Preliminary results demonstrate immediate environmental impacts.

- 2.5-years of increasing rocket launch and re-entry emissions result in global stratospheric ozone depletion of -0.007%.
- Large increase in stratospheric black carbon burden (+108%).
- Increasing rocket launch and re-entry emissions cause cooling at tropopause and heating at top of atmosphere.

More research/data is needed to address uncertainties:

- Experimental data for launch and re-entry emission indices at varying altitudes.
- % survivability and chemical composition for each re-entering object.
- Increased data availability from rocket manufacturers to aid research.
- Particle size, mass distribution and optical properties of BC/Al₂O₃ aerosol emissions.

Next steps:

- Finish simulating the impacts of a decade of all launch and re-entry emissions on stratospheric ozone and climate.
- Simulate the megaconstellation emissions only to see the individual environmental impact of SMCs.

