Developing inventories of by-products from satellite megaconstellation launches
and disposal to determine the influence on stratospheric ozone and climate
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The rise of satellite megaconstellations (SMCs)

SpaceX Starlink

~ 540,000 extra SMC satellites planned for Low Earth Orbit. New sustainability and debris guidelines will
contribute to rapidly increasing launch rates and re-entry mass.



Air pollutant emissions from satellite megaconstellations
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Rocket launch and re-entry emissions affect ozone and climate ucl
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Creating a vertical distribution of launch emissions T
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Conversion of re-entry mass to upper atmosphere emissions 5~

Reusable Objects Expendable Objects
Composition: Survivability:
Rocket Stages 70% Core
70% Al 35% Upper
Payloads 0% SMC
40% Al 20% Non-SMC
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Re-entry mass has increased since 2020 (3.27-5.59 Gg, 878-1650 objects), partly driven by satellite
megaconstellations (17-23%). Conversion to emissions requires broad assumptions on ablation and chemical

composition. _ _
[Schulz, L. & Glassmeier, K. H. 2021, Jain 2023]



Vertical distribution of emissions for all rocket launches and re-entries (2022)
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Most BC, NO,, H,0, CO, Cl,, and Al,0; emissions are injected
above the tropopause.



Satellite launch and re-entry emission inventory
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Anthropogenic re-entry NO, (1.60 Gg) is
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Kerosene fuel dominates megaconstellation launches,
reducing harmful Cl, and Al,O; emissions.




Rocket launch and re-entry emissions deplete ozone and affect climate RS

A[O3]/ %

Impact of improved 2020-2022 emissions on
stratospheric concentration.

T @
0002] %eeces Ozone (-0.007%)
-0.004 "o.........
—0.006 ®oeo0
® 9 00
-0.008
-0.010
150
e
EIOO‘ ........‘
E o®%°
v 0e00e0e®
4 8]
g o ® ¢
[ o
S |Le*°® Black Carbon (+108%)
0 - T T
2020 2021 2022

GE.

Year

Global stratospheric ozone depletion after 2.5 years is
approaching 10-year loss in Ryan et al. 2022 (-0.01%).
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Increased stratospheric BC burden drives cooling at tropopause and
heating at top of atmosphere, dominated by SW.




Conclusions, uncertainties and next steps

Compiled emission inventories for 2020-2022 SMC and non-SMC emissions.

« Launch and re-entry have risen from 2020-2022 for megaconstellation and non-megaconstellation sources.
« Anthropogenic alumina re-entry emissions have exceeded the natural meteoritic injection.

Preliminary results demonstrate immediate environmental impacts.

« 2.5-years of increasing rocket launch and re-entry emissions result in global stratospheric ozone depletion of -0.007%.
- Large increase in stratospheric black carbon burden (+108%).
« Increasing rocket launch and re-entry emissions cause cooling at tropopause and heating at top of atmosphere.

More research/data is needed to address uncertainties:

« Experimental data for launch and re-entry emission indices at varying altitudes.

« % survivability and chemical composition for each re-entering object.

+ Increased data availability from rocket manufacturers to aid research.

 Particle size, mass distribution and optical properties of BC/Al,O5 aerosol emissions.

Next steps:

« Finish simulating the impacts of a decade of all launch and re-entry emissions on stratospheric ozone and climate.
« Simulate the megaconstellation emissions only to see the individual environmental impact of SMCs.
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