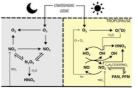
Spatially and diurnally varying lightning NO_x production rates for use in GEOS-Chem

Rebekah P. Horner¹(rebekah.horner.20@ucl.ac.uk), Eloise A. Marais¹, Lee T. Murray²

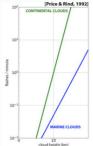
¹Department of Geography, University College London; ²Department of Earth and Environmental Sciences, University of Rochester

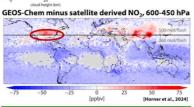
We derive spatially and diurnally varying lightning NO_x production rates with satellite observations of lightning energies for improved representation of NO_x sources in models


1 NO_x formation from lightning

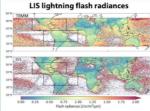
- · Lightning-produced NO_x is the most dominant source of NO, throughout most of the
- High-energy lightning discharges break apart N₂ and O₃ molecules. that then recombine as NO, which

Lightning NO_x forms through N_2 and O_2 breakdown


Tropospheric NO_x chemistry and influence on O₃


- · NO., initiates O₁ formation and drives radical cycles involving OH and HO2, which influence the atmosphere's oxidation capacity.
- · Compounds like PAN, PPN, and nighttime N2Os act as temporary NOx reservoirs, enabling redistribution across different regions before releasing NO2 back into the

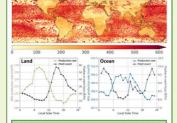
 ${\rm NO_x}$ drives ${\rm O_3}$ formation while reservoir compounds like PAN, PPN and ${\rm N_2O_5}$ redistribute ${\rm NO_x}$


3 The representation of lightning NO_x

- · Lightning flash rates are calculated using the relationship with cloud-top
- · Flash rates are adjusted with local scaling factors to match lightning flash climatologies from space-based detectors (Murray et al., 2012).
- · NO_x emissions are calculated using static production rate of 500 mol/flash in the northern midlatitudes and 260

4 Lightning flash energies from the LIS

Diurnal variation in flash radiances


than land, with ISS-LIS exceeding TRMM-LIS

- · Lightning Imaging Sensors (LIS) onboard the TRMM satellite and the International Space Station measures lightning flash energies that can constraint NO. production.
- Flash radiances are ~60% greater over oceans than land, driven by oceanic conductivity, larger ISS-LIS (International Space Station) radiances are 31% greater than TRMM-LIS (Tropical Rainfall Measuring Mission), with a greater difference between ocean and land.
- Flash radiances over land peak at 7-10 LST due to overnight charge build-up, while ocean radiance stays elevated from 5-18 LST due

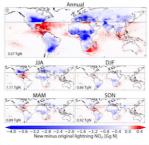
5 Lightning NO_x production rates

- We adapt the β-method (Wu et al., 2023, Koshak et al. 2017) to use LIS flash radiances (I/sr/m²/um) instead of optical energies (J), assuming a proportiona relationship between lightning optical energy and NO_x production.
- Calculate LIS scaling factor (β) to correct for LIS's limited observed energy: $\beta = \frac{Q}{r}$ where Q = LIS flash radiances; $E = \text{total flash energy} (\frac{\overline{P} N_A}{v})$.
- Parameters: NO $_{\rm x}$ yield ${\bf y}=9~{\bf x}~10^{16}$ molecules/J, LNO $_{\rm x}$ production $\overline{P} = 265 \text{ mol/flash, Avogadro's number } N_A$.
- Compute lightning NO_x production rates per 0.5°×0.625° hourly grid:

$$P = \frac{y}{\beta N_A} Q$$

(6) Evaluation using GLM

Diurnal variation in flash energies


- Normalising GLM, TRMM, and ISS lightning energy data enables direct comparison, revealing a similar morning peak (9:00 LST) in over land, 10-55% higher than average.
- GLM peaks earlier over oceans (4:00 LST) than land (9:00 LST) due to its continuous geostationary coverage, while ISS consistently peaks between 9:00-10:00 LST over both land and ocean and TRMM peaks at 7:00 LST over ocean and 10:00 LST over land.
- convection driven by solar heating, which destabilises the lower atmosphere, enhances updrafts, and intensifies thundersto

Data show morning peaks, driven by solar heating and atmospheric convection

(7) Impact on LNO_x emissions

- Updated lightning NO_x production rates decrease global lightning NO_x emissions from 5.5 \pm 0.2 Ta N vr⁻¹ to 3.6 \pm 0.1 Ta N vr⁻¹ between 2015-2019
- areas (e.g., Central America, Gulf of Mexico, South Africa) due to higher energy marine lightning flashes, while parts of the tropics (Central Africa, to updated lower lightning NO, production rates (decrease from 260 mol/flash to 220 & 180

Change in lightning NO_x emissions

xidative capacit and CH₄ and

8 Impact of updated lightning NO_x on tropospheric composition (June-August 2019)

- In June-August (JJA) NO_x increases up to 190 pptv despite the ²⁹ NO_x global decline in lightning NO_x emissions because of convective uplift of localised increases that occur in the subtropics.
- This drives northern hemisphere O₁ increases of 25 ppbv due to O₃'s longer lifetime and poleward transport. PAN enhancements (>65 pptv) occur across 20-90°N. OH increases up to 0.13 pptv, driven by enhanced O₃ photolysis and HO₂ decreases by up to 0.95 pptv due to enhanced OH cycling with NO, maintaining oxidative
- The same spatial changes are seen in other seasons of the year though the magnitude is smaller because of the reduced

Acknowledgements

This work is funded by the EBC una Aarais, UpTrop (grant no. 851854)).